Oscillating carbon nanotori along carbon nanotubes

نویسندگان

  • Tamsyn A. Hilder
  • James M. Hill
چکیده

The discovery of carbon nanostructures, such as nanotubes and C60 fullerenes, has given rise to a number of potential nanoscale devices. One such device is the gigahertz oscillator, comprising an inner shell sliding inside an outer shell of a multiwalled carbon nanotube, and which, at least theoretically, generates oscillatory frequencies in the gigahertz range. Following the concept of these gigahertz oscillators and the recent discovery of “fullerene crop circles,” here we propose the notion of a nanotorus-nanotube oscillator comprising a carbon nanotorus which is sucked by the van der Waals force onto the carbon nanotube, and subsequently oscillates along the nanotube axis due to the equal and opposite pulselike forces acting at either end of the nanotube. Assuming a continuum approach, where the interatomic interactions are replaced by uniform atomic surface densities, and assuming that the geometry of the nanotube and nanotorus is such that the nanotorus always remains symmetrically situated around the nanotube, we present the basic mechanics of such a system, including the determination of the suction and acceptance energies, and the frequency of the resulting oscillatory motion. In contrast to the previously studied gigahertz nanoscale oscillators, here the oscillatory frequencies are shown to be in the megahertz range. Our study, although purely theoretical must necessarily precede any experimental implementation of such oscillatory systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes

The realization of the potential of carbon nanotori as elements of nanoscale devices based on their recently predicted unusual properties requires a thorough understanding of contacting these nanostructures. We carried out a series of calculations of the electric conductance of carbon nanotori contacted by single-wall carbon nanotubes to shed light on the effects of the geometry as well as the ...

متن کامل

Colossal paramagnetic moments in metallic carbon nanotori.

Carbon nanostructures with unusually large paramagnetic moments have been discovered in a theoretical study of the electronic and magnetic properties of carbon nanotubes bent into toroids. Specifically, nanotori formed from metallic nanotubes with lambda(F) = 3T, where lambda(F) is the Fermi wavelength and T the translation vector of the nanotube, exhibit giant paramagnetic moments at selected ...

متن کامل

Persistent currents in carbon nanotubes based rings

Persistent currents in rings constructed from carbon nanotubes are investigated theoretically. After studying the contribution of finite temperature or quenched disorder on covalent rings, the complexity due to the bundle packing is addressed. The case of interacting nanotori and self-interacting coiled nanotubes are analyzed in details in relation with experiments.

متن کامل

Claromatic Carbon Nanostructures

Eric Clar’s qualitative ideas for benzenoids are described in application to various novel nanostructures: graphene, edges in graphene, carbon nanotubes, carbon nanocones, and carbon nanotori. The specially singled out most highly aromatic species with Clar structures consisting entirely of aromatic sextets are proposed to be termed “claromatic”. Several such claromatic nanostructures are ident...

متن کامل

Computational studies of carbon nanotube structures

Here we continue our previous exploratory work [Huhtala et al., Comput. Phys. Commun. 146 (2002) 30] in investigating carbon nanotube structures under different bending strain conditions by using large-scale molecular dynamics simulations. On the one hand bending strain is obtained by forcing nanotubes of different chirality to a closed toroidal configuration and on the other hand by bending a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017